26 research outputs found

    A competitive integration model of exogenous and endogenous eye movements

    Get PDF
    We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks. © The Author(s) 2010

    Testing a dynamic field account of interactions between spatial attention and spatial working memory

    Get PDF
    Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: if attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal is reexamined in light of a neural process model of SWM. On the basis of the model’s functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color-discrimination task during the delay interval of a spatial recall task. In the critical shifting attention condition, the color stimulus could appear either toward or away from the memorized location relative to a midline reference axis. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors but no change in directional error, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations—as predicted by the model—there should be systematic changes in the pattern of spatial recall errors depending on the direction of the shift. Results were consistent with the latter possibility—recall errors were biased toward the location of discrimination targets appearing during the delay

    Visualizing Information Processing in Neural Vision Networks by Backprojecting Detector Characteristics to Visual Space

    No full text
    The development of complex artificial vision systems raises the problem of evaluating the performance of constituting modules for purpose of optimization. We propose two methods for the visualization of modules' performance which can be applied to vision systems in neural architectures. These are characterized by several levels of coupled feature detecting units. We map detector outputs back into the image domain using superpositions of receptive fields of the activated detectors for geometric, static features and population vectors for vector valued information. These very general methods are demonstrated with data from processing stages extracting orientation of contrast edges and motion direction. 1 Introduction The design of complex, real-world vision systems is faced with the problem of evaluating the performance of special purpose sensory modules as parts of an integrated complete system. For instance, such modules may perform edge detection, motion detection, or segmentation. T..

    Stimulation initiative for european neural applications (siena)

    No full text
    Item does not contain fulltex

    Contour Segmentation with Recurrent Neural Networks of Pulse-Coding Neurons

    No full text
    . The performance of technical and biological vision systems crucially relies on powerful processing capabilities. Robust object recognition must be based on representations of segmented object candidates which are kept stable and sparse despite the highly variable nature of the environment. Here, we propose a network of pulse-coding neurons based on biological principles which establishs such representations using contour information. The system solves the task of grouping and figureground segregation by creating flexible temporal correlations among contour extracting units. In contrast to similar previous approaches, we explicitly address the problem of processing grey value images. In our multi-layer architecture, the extracted contour features are edges, line endings and vertices which interact by introducing facilatory and inhibitory couplings among feature extracting neurons. As the result of the network dynamics, individual mutually occluding objects become defined by temporally..

    Aktive Sehsysteme mit biologienahen Neuronalen Netzen Abschlussbericht

    No full text
    SIGLEAvailable from TIB Hannover: F98B718+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, Bonn (Germany)DEGerman
    corecore